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Abstract. We describe an attack on the RSA cryptosystem when the
private exponent d is chosen to be ’small’, under the condition that a suf-
ficient amount of bits of d is available to the attacker. The attack uses a
2-dimensional lattice and is therefore (in the area of the keyspace where
it applies) more efficient than known attacks using Coppersmith tech-
niques. Moreover, we show that the attacks of Wiener and Verheul/Van
Tilborg, using continued fractions techniques, are special deterministic
cases of our attack, which in general is heuristic.
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1 Introduction

Since the introduction of the RSA cryptosystem in 1977, people have been look-
ing for its vulnerabilities. A summary of attacks on RSA up to 1999 was given
by Boneh in [2]. Although none of these attacks totally break RSA, they provide
a certain guideline for the use of RSA and show in which cases the cryptosystem
is unsafe.

For instance, it is known that using a small private exponent d can be dan-
gerous. In 1990, Wiener showed in [13] that if the size of d is less than 1

4 th of the
size of the modulus N , it can be found by continued fractions methods. Verheul
and Van Tilborg [11] generalized this result in 1997, to obtain an attack based
on continued fractions that works if d is slightly larger than N

1
4 . In 2000, Boneh

and Durfee [3] extended Wiener’s bound to d < N0.292.
The concept of partial key exposure attacks on RSA was introduced in 1997

by Boneh, Durfee and Frankel in [4], and deals with the situation where an
attacker has obtained some bits of the private exponent d. The main question
is: How much information on the bits of d is needed such that an attacker can
reconstruct d, thereby breaking the RSA instance?
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The motivation for exploring partial key exposure attacks comes from side-
channel attacks such as power analysis, timing attacks, etc. Using a side-channel,
an attacker can expose a part of d, generally an MSB (most significant bit) part
or LSB (least significant bit) part.

In all the subsequent papers about partial key exposure attacks, the assump-
tion is made (besides knowledge of MSBs/LSBs of d) that one of the exponents
e, d is chosen to be small (at least significantly smaller than the modulus N).
This is a common practice, since a small exponent yields faster modular expo-
nentiation. For instance, e = 216 +1 = 65537 is a popular choice, and for signing
operations on constrained devices such as smartcards, it is useful to have the
private (signing) exponent d to be small, though obviously larger than N0.292.

The first partial key exposure attacks by Boneh, Durfee, and Frankel [4] re-
quired the public exponent e to be smaller than N

1
2 . Blömer and May extended

their result in [5] with attacks for e ∈ [N0.5, N0.725]. Ernst, Jochemsz, May, and
De Weger [7] recently showed attacks for both the situations where the private
exponent d or the public exponent e is chosen to be small. Both their attacks
work up to full size exponents.

In the papers [3,5,7], lattice methods are used instead of continued fractions
methods. Generally, one starts by describing an RSA situation in terms of an
integer polynomial that has a small (unknown) root, or a polynomial that has a
small (unknown) root modulo a known constant. After that, one uses the theory
initiated by Coppersmith [6], to construct a lattice with polynomials with the
same root, and reduce the lattice to obtain a polynomial, again having the same
root, whose coefficients are small enough to find the root.

These attacks using lattice methods are asymptotic, meaning that if one comes
close to the maximal value for the unknown part of d for which an attack should
work, the lattices involved are very large. This implies that the lattice reduc-
tion phase, for which the LLL-algorithm [8] is used, may take a prohibitively
long time.

Therefore, it may be useful to look at very small lattices instead of very large.
In this paper, we explore for which sizes of d, one can mount an attack in a few
seconds with a very simple method using a 2-dimensional lattice. Our result is
summarized in the following theorem.

Theorem 1. Under a reasonable heuristic assumption that we specify in As-
sumption 1, the following holds: Let N = pq be an n-bit RSA-modulus, and p,
q primes of bitsize n

2 . Let 0 < β < 1
2 , and let e, d satisfy ed ≡ 1 mod φ(N)

with bitsize(e) = n and bitsize(d) = βn. Given a (total) amount of (2β − 1
2 )n

MSBs and/or LSBs of d (see Figure 1), N can be factored very efficiently, using
a 2-dimensional lattice.

We will comment on what ’very efficiently’ means in Section 5, when we compare
the performance of this attack on small d to the method of Ernst et al. [7].
Moreover, we show that the results of Wiener and Verheul/Van Tilborg can be
obtained by our attack on small d and are simply special (homogeneous and
deterministic) cases. One could also say that our partial key exposure attack
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d: 100100010101111011100010100110111011001101

sizes: NΚN
1����2 � ΒN2�Β� 1����2 �Κ

� LSBsMSBs �

Fig. 1. Partition of d for small d

is the inhomogeneous counterpart of the results by Wiener and Verheul/Van
Tilborg. We will comment on this, and on the heuristic assumption in the other
cases, in Section 4.

The rest of this paper is organized as follows. In Section 2, we will state pre-
liminaries on RSA and on lattice techniques, define some notation and introduce
Assumption 1. Section 3 will contain the description of the attack for small d.
In Section 4, we will comment on the cases where our attack does not depend
on Assumption 1 and is therefore deterministic, and at the experimental results
for the heuristic in the cases where we do need Assumption 1. In Section 5, we
look at the efficiency of our method and compare our 2-dimensional attack with
the existing partial key exposure attacks on small d of [7]. Finally, we will give
a conclusion in Section 6.

2 Preliminaries on RSA and Lattices

In this section, we state some basic properties of RSA, the cryptosystem we are
attacking and of 2-dimensional lattices, the tool we use to do so.

Let p, q, N, d, e be as usual, i.e. p and q are distinct primes, N = pq is taken
as modulus, and the encryption exponent e and decryption exponent d satisfy
ed ≡ 1 (mod φ(N)). For the attack in this paper, we assume that p and q have
the same bitsize, thus p + q < 3N

1
2 . Let k ∈ Z be defined by the RSA key

equation

ed − 1 = kφ(N), where φ(N) = (p − 1)(q − 1) = N − (p + q − 1).

In our attack in this paper, we assume that the private exponent d is chosen
to be small, for efficient modular computations. From the RSA key equation, it
follows directly that k < d.

We define a 2-dimensional lattice L as the set of all integer linear combinations
of two linearly independent vectors {b1,b2}, which are basis vectors. We usually
say that L is the lattice spanned by the columns of the matrix Γ = (b1 b2).
The determinant of L is det(L) = | det(Γ )|, and though there are infinitely many
bases possible, the determinant is always the same.

To find a small, so-called reduced basis {r, s}, one can use a reduction al-
gorithm. For a 2-dimensional lattice, the Lagrange reduction algorithm (which
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is simply a generalization of Euclid’s algorithm) finds a reduced basis, and this
basis also contains the smallest nonzero vector of the lattice. We are interested
in how small the reduced basis vectors are in norm.

We use the following notation for size-computations in this paper. With u ≈
Nλ, we mean that u ’has the size of’ Nλ, that is |u| = CuNλ for some number

Cu that does not deviate much from 1. Naturally,
(

v1
v2

)
≈

(
Nλ1

Nλ2

)
is a short

notation for v1 ≈ Nλ1 and v2 ≈ Nλ2 .
When we reduce the matrix Γ to Γred = (r s), with r the smaller reduced basis

vector and s the larger reduced basis vector, it holds that ||r|| · ||s|| ≈ det(L).
So, we assume ||r|| ≈ a−1 det(L)

1
2 and ||s|| ≈ a det(L)

1
2 for some a ≥ 1.

Hence,

Γred = (r s) =
(

r1 s1
r2 s2

)
, and Γ−1

red = 1
det(Γ )

(
s2 −s1

−r2 r1

)
=

(
s′T

r′T

)
.

It follows that the first row s′ of Γred satisfies ||s′|| ≈ a det(L)
1
2 . Analogously,

||r′|| ≈ a−1 det(L)
1
2 .

If the two reduced basis vectors r, s are ’nearly-equal’ in length, that is
when a does not deviate much from 1, then ||r|| ≈ ||s|| ≈ det(L)

1
2 . In other

words, all reduced basis vectors of L have a norm of size det(L)
1
2 . However, it

is also possible that there is one ’extremely small’ basis vector, which makes
the lattice ’unbalanced’. For the attacks in this paper, we make the following
assumption.

Assumption 1. The reduced basis vectors given by the columns of Γred both
have a norm of size det(L)

1
2 . In other words, the parameter a used to describe

the unbalancedness of the lattice is near to 1.

In Section 4, we comment on how this assumption holds in practice.

Fig. 2. a ≈ 1 Fig. 3. a � 1

Having discussed the necessary preliminaries, we are now ready to explain the
2-dimensional partial key exposure attack on RSA for small d.
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3 The Attack on Small d

3.1 Description of the Attack

Let d = Nβ < N
1
2 and e < φ(N) < N . In this section, we will prove the

statement in Theorem 1, namely that we can factor N very efficiently if we
know a (total) amount of (2β − 1

2 )n MSBs and/or LSBs of d.
This implies that our method will work if the ’unknown middle part’ of d is

of size N δ with δ < β − (2β − 1
2 ) = 1

2 − β. The situation is sketched in Figure 4.

d: 100100010101111011100010100110111011001101

dM x dL

sizes: NΚNΔNΒ�Δ�Κ

� LSBsMSBs �

Fig. 4. Partition of d when MSBs and/or LSBs are known

Let dL be the known LSB part of d of size Nκ, followed by an unknown
middle part x of size N δ, which itself is followed by a known MSB part dM , of
size Nβ−κ−δ. Hence, we can write

d = dL + 2�κn�x + 2�κn�+�δn�dM ,

where � � is simply rounding to the nearest integer.
When we substitute the partition of d in the RSA key equation, we obtain

e2�κn�x + edL + e2�κn�+�δn�dM − 1 = k(N − (p + q − 1)).

Therefore, we must find the solution (x, y, z) = (x, k, p + q − 1) of the trivariate
equation

e2�κn�x − Ny + yz + R − 1 = 0, with R = edL + e2�κn�+�δn�dM .

The equation above implies that

|e2�κn�x − Ny + R| = |1 − yz| ≤ |k(p + q − 1)| ≤ |d(p + q)| ≤ 3Nβ+ 1
2 .

This is an inhomogeneous diophantine approximation problem in the un-
knowns x and y. To solve it, we define a lattice L spanned by the columns
of Γ , with

Γ =
(

C 0
e2�κn� N

)
, and v =

(
0

−R

)
,

where C is a convenient integer of size Nβ−δ+ 1
2 .
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The lattice point Γ

(
x

−y

)
is close to v, since

Γ

(
x

−y

)
− v =

(
Cx

e2�κn�x − Ny + R

)
≈

(
Nβ+ 1

2

Nβ+ 1
2

)
.

Our strategy to find x and y is therefore to start with a lattice vector v′ close
to v, and add small multiples of the reduced basis vectors of the lattice L until

we get Γ

(
x

−y

)
. To do so, we apply lattice basis reduction to the columns of Γ ,

and obtain a reduced matrix Γred, whose columns still span L. We aim to find
an integer pair (z1, z2) for which

Γred

(
z1
z2

)
= Γ

(
x

−y

)
− Γred

⌊
Γ−1

redv
⌉
,

where
⌊
Γ−1

redv
⌉

= v′ is the vector we get from rounding the elements of Γ−1
redv to

nearest integers. Alternatively, one could also solve the closest vector problem
to obtain a lattice vector v′ to start with, but in practice the closest vector will
almost immediately appear in this way as well.

It can be checked that

Γred

(
z1
z2

)
= (Γ

(
x

−y

)
− v) − (Γred

⌊
Γ−1

redv
⌉

− v) ≈
(

Nβ+ 1
2

Nβ+ 1
2

)
+ Γred

(
ε1
ε2

)
,

with |εi| < 1
2 . Therefore

(
z1
z2

)
≈ Γ−1

red

(
Nβ+ 1

2

Nβ+ 1
2

)
+

(
ε1
ε2

)
=

(
s′T

r′T

)(
Nβ+ 1

2

Nβ+ 1
2

)
+

(
ε1
ε2

)

�
(

a det(L)−
1
2 Nβ+ 1

2 + ε1
a−1 det(L)−

1
2 Nβ+ 1

2 + ε2

)
≈

(
aN

1
2 (β+δ− 1

2 ) + ε1
a−1N

1
2 (β+δ− 1

2 ) + ε2

)
.

Each pair (z1, z2) leads to a pair (x, −y). If we substitute x as the unknown part
of d, and y as k, we can find a φ that satisfies ed−1 = kφ. First we test whether
φ, computed as ed−1

k is integral (unfortunately we see no way how to use this
condition earlier). The next test will be to solve for the integer roots p, q of the
quadratic equation X2 − (N + 1 − φ)X + N = 0.

The number of pairs (z1, z2) to try is of size

(aN
1
2 (β+δ− 1

2 )) · max{a−1N
1
2 (β+δ− 1

2 ), 1}.

Hence, the number of pairs (z1, z2) to try is either

– O(Nβ+δ− 1
2 ), when a < N

1
2 (β+δ− 1

2 ), or
– O(aN

1
2 (β+δ− 1

2 )), when a > N
1
2 (β+δ− 1

2 ).

Note that in the latter case, z2 = 0, but we do have to check for all z1
separately.
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In the next section, we show the relation between our method and the attacks
of Wiener [13] and Verheul/Van Tilborg [11], which are special cases of this
attack. For these situations, we show that the attacks are deterministic instead

of heuristic, simply because the lattice vector Γ

(
x

−y

)
is small enough to ensure

that the search region does not depend on a.
However, if we are outside the range of Wiener’s and Verheul/Van Tilborg’s

attacks, it is highly unusual that the lattice involved contains an exceptionally
small nonzero vector, which would make the lattice unbalanced and the attack
inefficient. By Assumption 1, we take a to be close to 1. Under this heuristic,
the number of pairs (z1, z2) to try is O(Nβ+δ− 1

2 ). In Section 4.2, we will show
that this assumption is reasonable in practice.

Under our heuristic assumption, and provided that δ is smaller than or at
most only marginally larger than 1

2 − β, then we can efficiently try all pairs
(z1, z2) and find the factorization of N .

One might note that by knowing MSBs of d, one can also obtain an MSB
part of k. However, splitting k into a known and an unknown part results in
more combinations of variables, which we can only represent in a 3-dimensional
lattice instead of a 2-dimensional one. The 3-dimensional lattice attack will give
a worse analysis then the method described in this section. This is an example
of a common phenomenon in lattice based cryptanalysis, namely that sometimes
one can get better results by leaving out information that one knows, just by
the monomials of the equation involved.

3.2 Complexity

We now study the total complexity of the above attack.
Firstly it requires one lattice basis reduction for a 2-dimensional lattice. This

is just Lagrange reduction, which takes at most O((log N)3) bit operations.
Secondly, a number of O(Nβ+δ− 1

2 ) pairs (z1, z2) have to be checked for coming
from a solution. For each vector this check takes O((log N)2) bit operations.

It follows that the bit complexity of our attack is O((log N)3) when δ ≤ 1
2 −β,

which is polynomial. When δ = 1
2 −β+ε the bit complexity becomes exponential,

namely O(N ε(log N)2). This results in an increased workload by a factor N ε.
In other words, for an additional amount of r unknown bits, the complexity is
equivalent to an exhaustive search over r bits. Furthermore, in the case that we
let both d and the unknown part of d grow r bits, such that the known part
of d stays of the same size, one can check that the extra workload will be an
exhaustive search over 2r bits. This relates directly to a result of Verheul and
Van Tilborg [11], on which we shall comment in Section 4.1.

3.3 Examples

We have done several experiments for this attack. A typical case is with 2048
bit N and δ = 0.156, β = 0.350 (e.g. ε = 0.006), meaning that d has about 717
bits, of which at most the 320 least significant bits are unknown.
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Then N
1
2 (δ+β− 1

2 ) ≈ 70. Indeed, we typically find a hit with ‖z‖ � 200. A
search area like this takes only a few seconds with Mathematica 5 on a 2GHz
Pentium 4 PC. And with δ ≤ 1

2 −β typically ‖z‖ ≈ 1, and the computation time
is only a fraction of a second.

Here’s a baby example for {δ = 0.156, β = 0.35}. Let the 128-bit public key
be given by

N = 269866491905568049204176579604167754067,
e = 222981052634419442506270512141611354797.

Now suppose we know some MSBs of d, hence we know an approximation

d̃ = 24584250313023

of d for which d0 = d − d̃ is 0.156 · 128 ≈ 20 bits. We take

C = 2�128·(0.35−0.156+0.5)� = 289, and
R = ed̃ = 5481822013025924218218657989757723471271758362621331,

and we know that we are looking for {d0, k} such that

Γ ·
(

d0
−k

)
− v =

(
C 0
e N

)
·
(

d0
−k

)
−

(
0

−R

)

is a small vector. Then Γred is given by
(

93923748720621086836871453999104 −645630915298759729739927100850176
223858603616044679201441362439981 239654325473299927083414831489037

)

and �Γ−1
redv� =

(
−21188034626414783992
−3082348742879388262

)
.

We then enumerate the pairs {z1, z2}, for each value computing

(
x

−y

)
= Γ−1

(
Γred

(
z1
z2

)
+ Γred�Γ−1

redv�
)

.

We try d = d̃ + x and k = y, and solve N + 1 −
(

p +
N

p

)
=

ed − 1
k

to get a

possible factor p.

At z =
(

−2
−1

)
we have a hit, namely x = 1016998, y = 20313089635876, so

we find that d = 24584251330021, and k = 20313089635876.
It follows that φ(N) = 269866491905568049171299025219693706736, and

then we obtain the factors

p = 15833051453602685849,
q = 17044502930871361483.
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4 The Deterministic and Heuristic Cases of the Attack

4.1 Wiener and Verheul/Van Tilborg

In [11,13], attacks were described for small d. Wiener showed that when d < N
1
4 ,

it can be found in polynomial time. Verheul and Van Tilborg’s extension of
Wiener’s result shows the price for d slightly larger than this. Their attacks can
be seen as homogeneous diophantine approximation problems, and continued
fraction techniques are used to solve them.

In this section, we will show that Wiener’s and Verheul/Van Tilborg’s attacks
are special cases of our method. Moreover, we will show that in these cases the
method is deterministic, in other words, it does not depend on the size of a (the
parameter that describes the unbalancedness of the lattice).

Wiener [13] bases his attack on the fact that
k

d
can be found as a convergent

of
e

N
if ∣∣∣∣ e

N
− k

d

∣∣∣∣ <
1

2d2 .

It is commonly known (see for instance [9]) that this can also be described using
a 2-dimensional lattice. When we assume no part of d is known (dM = dL = 0),
it follows that R = 0 and

Γ =
(

C 0
e N

)
, v = 0,

with C of size Nβ−δ+ 1
2 = N

1
2 , will reproduce Wiener’s result, namely that the

method will work if β < 1
4 . Later in this section we will show that the solution

will be found by the shortest lattice vector only, making this case deterministic.
Verheul and Van Tilborg [11] have given an extension of Wiener’s attack,

where d is at most slightly larger than N
1
4 and no bits are known. To find k

d ,
they look not only at convergents of e

N , but also at ’linear combinations’ of
consecutive convergents, which, be it not the best, nevertheless are pretty good
approximations. To be precise, when

pi−1

qi−1
,
pi

qi
are consecutive convergents, then

they also look for approximations to
e

N
of the form

λpi + μpi−1

λqi + μqi−1
for parameters

λ, μ ∈ N. Then they have a weaker inequality to satisfy, of the form of∣∣∣∣ e

N
− k

d

∣∣∣∣ <
c

d2 ,

where the exact value for c depends on the search region for λ and μ. In this
way they show that in order to extend Wiener’s result for d < N

1
4 by r bits, one

has to do an additional computation of the complexity of an exhaustive search
over 2r bits.

In the language of lattices this becomes immediately clear. With Γ as above
and v = 0 (as we’re still in the homogeneous case), the results of Section 3.2
show that for δ = β = 1

4 + ε, the complexity of the attack is O(N2ε(log N)2).
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The example given in [11] will go as follows in our method. We start with the
lattice

Γ =
(

238 0
e N

)
=

(
238 0

7 115 167 804 808 765 210 427 31 877 667 548 624 237 348 233

)

(note that in [11] the value of e contains a misprint).
We compute the reduced basis

Γred =
(

42 694 311 384 449 024 87 227 281 088 446 464
34 997 160 860 155 755 −133 735 834 148 055 649

)
.

The lattice point we need is Γ

(
2d
−k

)
= Γ

(
3 295 186
−735 493

)
= Γred

(
11
5

)
. Here 2d

appears instead of d because in [11] ed ≡ 1 (mod lcm(p− 1, q− 1)) is taken, and
in this case gcd(p − 1, q − 1) appears to be equal to 2.

This shows that, at least in this example, the efficiency of our method is
comparable to [11], since we had to search for the numbers 11 and 5 of resp. 3.5
and 2.3 bits, together less than 7 bits (rather than 6 bits, because we have to
allow negative values for one of the coordinates).

The fact that Verheul and Van Tilborg require a computation of the com-
plexity of a 2r bit exhaustive search to allow r unknown bits more than 1

4 th of
N for both d and the unknown part of d (which, in this case, are of course the
same), corresponds to our complexity results of Section 3.2. However, it does not
directly imply that their method can be used in a partial key exposure setting.
In that sense our result, with the homogeneous case being a special case of the
general case, implies the result of [11], but not the other way around. We believe
that the method of Verheul and Van Tilborg can be combined with the method
of Baker and Davenport [1], for solving inhomogeneous diophantine approxima-
tion problems, but we see no advantages above our uniform and clean lattice
method.

Finally, we will show that the cases of Wiener and Verheul/Van Tilborg are
deterministic situations in our method.

Recall that we look for a small pair (d, k) such that(
C 0
e N

) (
d

−k

)
=

(
Cd

ed − kN

)
≈

(
Nβ+ 1

2

Nβ+ 1
2

)
.

We will argue that if d < N
1
4 (Wiener’s case), this small vector is actually the

smallest nonzero lattice vector, which will be found by the Lagrange reduction.
Suppose it is not the smallest vector. Then the smallest vector cannot be

linearly independent from it, for else the product of their sizes is smaller than
N2β+1 < N

3
2 , whereas the determinant of the lattice is det(L) = CN = N

3
2 .

This is a contradiction. The other option when
(

Cd
ed − kN

)
is not the smallest

vector, is that the smallest vector is(
Cx

ex − yN

)
= α

(
Cd

ed − kN

)
, for some α ∈ [−1, 1].
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It follows that d = 1
αx and k = 1

αy, and since ed− kφ(N) = 1, it must hold that

ex − yφ(N) = α.

Since the left hand side is an integer, α 
= 0, and α ∈ [−1, 1], it follows that
|α| = 1. Therefore, d = |x| and k = |y|. Hence, the shortest reduced basis vector
immediately gives us d and k. Thus, the method is clearly deterministic.

In the case of Verheul/Van Tilborg’s attack, d = N
1
4 +ε, so

(
Cd

ed − kN

)
≈

(
Nβ+ 1

2

Nβ+ 1
2

)
=

(
N

3
4+ε

N
3
4+ε

)
,

so this vector is not the smallest reduced vector. However, one can see that the
smallest vector must be linearly independent of it, so we know that

a−1 det(L)
1
2 · N 3

4+ε ≥ det(L).

It follows that a < det(L)−
1
2 N

3
4+ε = det(L)−

1
2 Nβ+ 1

2 = N
1
2 (β+δ− 1

2 ) and from
the computations in Section 3.1, we know that this means that the search area
is O(Nβ+δ− 1

2 ) = O(N2ε). So one can see that in this case, one also does not
depend on Assumption 1.

4.2 Comments on the Size of a in Other Cases

When we are outside the regions where the known continued fractions methods
from Wiener and Verheul/Van Tilborg apply, the attack depends on Assumption
1, namely that the elements of Γred are all of size det(L)

1
2 . In this section, we

will comment on how this assumption holds in practice.
Let m be the maximal entry of Γred, and m = a det(L)

1
2 . We want to check

that for the matrices involved in the attacks of this paper, a is close to 1. There-
fore, we performed tests for the attacks for small d in the following setup: N is
an 2048 bit modulus, β ∈ [0.25, 0.5], ε ∈ [0, 0.1], and δ = Min{β, 1

2 − β + ε}.
For this case, the lattices behaved as expected. In 500 experiments, the aver-

age value of a was approximately 1.9, and the maximal value of a was approxi
mately 39.

5 Efficiency of the Attack

Now let us give some intuition on how our attack compares in running time to
the other known results on partial key exposure attacks on small d, by Ernst
et al. [7].

Figure 5 and 6 are two pictures of the attacks that are currently known and
that use knowledge of MSBs or LSBs of d for relatively small d. The pictures
show, for each value of β (the size parameter of d) what fraction of d we need to
know in order to mount a successful attack. The area where the attack of this
paper applies is dark.
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Fig. 5. Small d with known MSBs
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Fig. 6. Small d with known LSBs

One can see that our results do not exceed or match the optimal bounds which
are already available. This is not surprising, since the attacks of [7] use large
lattices, containing shifts of the RSA key equation and therefore combinations
of monomials. Besides that, the attacks of [7] have asymptotic bounds. Hence,
in those cases, to be able to perform close to the theoretic bound, there can
be immensely large lattices involved, of which the reduction takes hours, days,
or longer. Our attack belongs to those situations of partial key exposure that
require only the reduction of a 2-dimensional lattice to solve, which an attacker
can perform in just a few seconds. Moreover we can even exceed the theoretical
bounds of the attacks with a small value ε.

To give some intuition of what this means in practice, we matched the 2-
dimensional attack on small d and known MSBs against those of Ernst et al. [7].
The result is shown in the following table. For different values of β and δ, and
different moduli N of 2048 bits, we computed the time to perform an attack for
both methods.

This time includes:

– lattice reduction, resultant computations, and using the root p+ q −1 of the
resultant polynomials to find p and q, for [7],

– lattice reduction and trying all pairs (z1, z2) to find p, q, for the 2-dimensional
method.

In the table, it shows that for β = 0.30, and δ = 0.205, our attack works in
approximately 2 seconds (this is an average over 50 experiments). It uses a sim-
ple Mathematica program that runs on a computer with Pentium III processor of
733 MHz.

On the other hand, for the same parameters we need about 40 minutes to solve
the problem using one of the methods of [7], and the smallest lattice for which
their attack works is of dimension 30 in this case. These experiments were done
using Shoup’s Number Theory Library [10], on a shared server with a Pentium
IV Xeon processor of 2.80 GHz.

For the cases {β = 0.30, δ = 0.210}, {β = 0.35, δ = 0.150}, and {β = 0.35, δ =
0.160}, one can see from the table that there are ’breaking points’ for the methods
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β δ Dim. lattice [7] Time method [7] Time 2D-method
0.30 0.050 10 35 sec. 1 sec.
0.30 0.100 10 35 sec. 1 sec.
0.30 0.150 10 35 sec. 1 sec.
0.30 0.200 30 40 min. 1 sec.
0.30 0.205 30 40 min. 2 sec.
0.30 0.210 30 / 50 40 min. / 4 1

2 hrs. 21 min.
0.35 0.050 10 35 sec. 1 sec.
0.35 0.100 10 35 sec. 1 sec.
0.35 0.150 14 / 30 1 min. / 40 min. 1 sec.
0.35 0.155 30 40 min. 2 sec.
0.35 0.160 30 / 50 40 min. / 4 1

2 hrs. 21 min.
0.40 0.050 10 35 sec. 1 sec.
0.40 0.100 14 1 min. 1 sec.
0.40 0.105 14 1 min. 2 sec.
0.40 0.110 14 1 min. 21 min.
0.45 0.050 14 1 min. 1 sec.
0.45 0.055 14 1 min. 2 sec.
0.45 0.060 14 1 min. 21 min.

Fig. 7. Experimental results: Comparison with [7]

of Ernst et al. For instance, if β = 0.30 and δ = 0.210, the 30-dimensional lattice
attack of [7] might suffice in some situations, whereas in others it will not lead
to the solution. Therefore, for these parameters, it is possible that the attack
takes either 40 minutes (if the attack using the 30-dimensional lattice works),
or approximately 4 1

2 hours (if the 30-dimensional attack does not work and one
has to use the 50-dimensional lattice attack).

6 Conclusion

We have shown how to perform a partial key exposure attack on RSA using a 2-
dimensional lattice. The attack applies when the private exponent d is chosen to be
small, which occurs in practice. In most cases, the attack is heuristic, but the un-
derlying assumption is a reasonable one and supported by experiments. Although
the attack does not achieve the theoretic bounds of known partial key exposure
attacks using Coppersmith’s method, it is much faster in the area where it applies.
Moreover, the attack shows what you can achieve with the simplest lattices possi-
ble, and also provides a link with the known attacks based on continued fractions
techniques, as they appear as special deterministic cases of our attack.
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